|
|||
1. Security Services (Overview) Part II System, File, and Device Security 2. Managing Machine Security (Overview) 3. Controlling Access to Systems (Tasks) 4. Virus Scanning Service (Tasks) 5. Controlling Access to Devices (Tasks) 6. Using the Basic Audit Reporting Tool (Tasks) 7. Controlling Access to Files (Tasks) Part III Roles, Rights Profiles, and Privileges 8. Using Roles and Privileges (Overview) 9. Using Role-Based Access Control (Tasks) 10. Role-Based Access Control (Reference) Part IV Solaris Cryptographic Services 13. Solaris Cryptographic Framework (Overview) 14. Solaris Cryptographic Framework (Tasks) 15. Solaris Key Management Framework Part V Authentication Services and Secure Communication 16. Using Authentication Services (Tasks) 19. Using Solaris Secure Shell (Tasks) 20. Solaris Secure Shell (Reference) Client and Server Configuration in Solaris Secure Shell Keywords in Solaris Secure Shell Maintaining Known Hosts in Solaris Secure Shell Solaris Secure Shell Packages and Initialization 21. Introduction to the Kerberos Service 22. Planning for the Kerberos Service 23. Configuring the Kerberos Service (Tasks) 24. Kerberos Error Messages and Troubleshooting 25. Administering Kerberos Principals and Policies (Tasks) 26. Using Kerberos Applications (Tasks) 27. The Kerberos Service (Reference) 28. Solaris Auditing (Overview) 29. Planning for Solaris Auditing 30. Managing Solaris Auditing (Tasks) |
A Typical Solaris Secure Shell SessionThe Solaris Secure Shell daemon (sshd) is normally started at boot time when network services are started. The daemon listens for connections from clients. A Solaris Secure Shell session begins when the user runs an ssh, scp, or sftp command. A new sshd daemon is forked for each incoming connection. The forked daemons handle key exchange, encryption, authentication, command execution, and data exchange with the client. These session characteristics are determined by client-side configuration files and server-side configuration files. Command-line arguments can override the settings in the configuration files. The client and server must authenticate themselves to each other. After successful authentication, the user can execute commands remotely and copy data between hosts. Session Characteristics in Solaris Secure ShellThe server-side behavior of the sshd daemon is controlled by keyword settings in the /etc/ssh/sshd_config file. For example, the sshd_config file controls which types of authentication are permitted for accessing the server. The server-side behavior can also be controlled by the command-line options when the sshd daemon is started. The behavior on the client side is controlled by Solaris Secure Shell keywords in this order of precedence:
For example, a user can override a system-wide configuration Cipher setting of blowfish by specifying -c 3des on the command line. Authentication and Key Exchange in Solaris Secure ShellThe Solaris Secure Shell protocols, v1 and v2, both support client user/host authentication and server host authentication. Both protocols involve the exchange of session cryptographic keys for the protection of Solaris Secure Shell sessions. Each protocol provides various methods for authentication and key exchange. Some methods are optional. Solaris Secure Shell supports a number of client authentication mechanisms, as shown in Table 19-1. Servers are authenticated by using known host public keys. For the v1 protocol, Solaris Secure Shell supports user authentication with passwords. The protocol also supports user public keys and authentication with trusted host public keys. Server authentication is done with a host public key. For the v1 protocol, all public keys are RSA keys. Session key exchanges involve the use of an ephemeral server key that is periodically regenerated. For the v2 protocol, Solaris Secure Shell supports user authentication and generic interactive authentication, which usually involves passwords. The protocol also supports authentication with user public keys and with trusted host public keys. The keys can be RSA or DSA. Session key exchanges consist of Diffie-Hellman ephemeral key exchanges that are signed in the server authentication step. Additionally, Solaris Secure Shell can use GSS credentials for authentication. Acquiring GSS Credentials in Solaris Secure ShellTo use GSS-API for authentication in Solaris Secure Shell, the server must have GSS-API acceptor credentials and the client must have GSS-API initiator credentials. Support is available for mech_dh and for mech_krb5. For mech_dh, the server has GSS-API acceptor credentials if root has run the keylogin command. For mech_krb5, the server has GSS-API acceptor credentials when the host principal that corresponds to the server has a valid entry in /etc/krb5/krb5.keytab. The client has initiator credentials for mech_dh if one of the following has been done:
The client has initiator credentials for mech_krb5 if one of the following has been done:
For the use of mech_dh in secure RPC, see Chapter 16, Using Authentication Services (Tasks). For the use of mech_krb5, see Chapter 21, Introduction to the Kerberos Service. For more information on mechanisms, see the mech(4) and mech_spnego(5) man pages. Command Execution and Data Forwarding in Solaris Secure ShellAfter authentication is complete, the user can use Solaris Secure Shell, generally by requesting a shell or executing a command. Through the ssh command options, the user can make requests. Requests can include allocating a pseudo-tty, forwarding X11 connections or TCP/IP connections, or enabling an ssh-agent authentication program over a secure connection. The basic components of a user session are as follows:
|
||
|