|
|||
1. Solaris TCPIP Protocol Suite (Overview) 2. Planning an IPv4 Addressing Scheme (Tasks 3. Planning an IPv6 Addressing Scheme (Overview) 4. Planning an IPv6 Network (Tasks) 5. Configuring TCP/IP Network Services and IPv4 Addressing (Tasks) 6. Administering Network Interfaces (Tasks) 7. Enabling IPv6 on a Network (Tasks) 8. Administering a TCP/IP Network (Tasks) 9. Troubleshooting Network Problems (Tasks) 10. TCP/IP and IPv4 in Depth (Reference) 12. About Solaris DHCP (Overview) 13. Planning for DHCP Service (Tasks) 14. Configuring the DHCP Service (Tasks) 15. Administering DHCP (Tasks) 16. Configuring and Administering DHCP Clients 17. Troubleshooting DHCP (Reference) 18. DHCP Commands and Files (Reference) 19. IP Security Architecture (Overview) 21. IP Security Architecture (Reference) 22. Internet Key Exchange (Overview) 24. Internet Key Exchange (Reference) 25. Solaris IP Filter (Overview) 28. Administering Mobile IP (Tasks) 29. Mobile IP Files and Commands (Reference) 30. Introducing IPMP (Overview) 31. Administering IPMP (Tasks) Part VI IP Quality of Service (IPQoS) 32. Introducing IPQoS (Overview) Providing Quality of Service With IPQoS Traffic Forwarding on an IPQoS-Enabled Network 33. Planning for an IPQoS-Enabled Network (Tasks) 34. Creating the IPQoS Configuration File (Tasks) 35. Starting and Maintaining IPQoS (Tasks) 36. Using Flow Accounting and Statistics Gathering (Tasks) |
Improving Network Efficiency With IPQoSIPQoS contains features that can help you make network performance more efficient as you implement quality of service. When computer networks expand, the need also increases for managing network traffic that is generated by increasing numbers of users and more powerful processors. Some symptoms of an overused network include lost data and traffic congestion. Both symptoms result in slow response times. In the past, system administrators handled network traffic problems by adding more bandwidth. Often, the level of traffic on the links varied widely. With IPQoS, you can manage traffic on the existing network and help assess where, and whether, expansion is necessary. For example, for an enterprise or institution, you must maintain an efficient network to avoid traffic bottlenecks. You must also ensure that a group or application does not consume more than its allotted bandwidth. For an ISP or ASP, you must manage network performance to ensure that customers receive their paid-for level of network service. How Bandwidth Affects Network TrafficYou can use IPQoS to regulate network bandwidth, the maximum amount of data that a fully used network link or device can transfer. Your QoS policy should prioritize the use of bandwidth to provide quality of service to customers or users. The IPQoS metering modules enable you to measure and control bandwidth allocation among the various traffic classes on an IPQoS-enabled host. Before you can effectively manage traffic on your network, you must answer these questions about bandwidth usage:
Using Classes of Service to Prioritize TrafficTo implement quality of service, you analyze network traffic to determine any broad groupings into which the traffic can be divided. Then, you organize the various groupings into classes of service with individual characteristics and individual priorities. These classes form the basic categories on which you base the QoS policy for your organization. The classes of service represent the traffic groups that you want to control. For example, a provider might offer platinum, gold, silver, and bronze levels of service, available at a sliding price structure. A platinum SLA might guarantee top priority to incoming traffic that is destined for a web site that the ISP hosts for the customer. Thus, incoming traffic to the customer's web site could be one traffic class. For an enterprise, you could create classes of service that are based on department requirements. Or, you could create classes that are based on the preponderance of a particular application in the network traffic. Here are a few examples of traffic classes for an enterprise:
|
||
|