|
|||
Part I Designing Device Drivers for the Solaris Platform 1. Overview of Solaris Device Drivers 2. Solaris Kernel and Device Tree 5. Managing Events and Queueing Tasks 7. Device Access: Programmed I/O 10. Mapping Device and Kernel Memory 14. Layered Driver Interface (LDI) Part II Designing Specific Kinds of Device Drivers 15. Drivers for Character Devices 18. SCSI Host Bus Adapter Drivers 19. Drivers for Network Devices Part III Building a Device Driver 21. Compiling, Loading, Packaging, and Testing Drivers 22. Debugging, Testing, and Tuning Device Drivers 23. Recommended Coding Practices B. Summary of Solaris DDI/DKI Services C. Making a Device Driver 64-Bit Ready |
Thread SynchronizationIn addition to protecting shared data, drivers often need to synchronize execution among multiple threads. Condition Variables in Thread SynchronizationCondition variables are a standard form of thread synchronization. They are designed to be used with mutexes. The associated mutex is used to ensure that a condition can be checked atomically, and that the thread can block on the associated condition variable without missing either a change to the condition or a signal that the condition has changed. The condvar(9F) functions are:
Initializing Condition VariablesDeclare a condition variable of type kcondvar_t for each condition. Usually, the condition variables are declared in the driver's soft-state structure. Use cv_init(9F) to initialize each condition variable. Similar to mutexes, condition variables are usually initialized at attach(9E) time. A typical example of initializing a condition variable is: cv_init(&xsp->cv, NULL, CV_DRIVER, NULL); For a more complete example of condition variable initialization, see Chapter 6, Driver Autoconfiguration. Waiting for the ConditionTo use condition variables, follow these steps in the code path waiting for the condition:
Signaling the ConditionFollow these steps in the code path to signal the condition:
The following example uses a busy flag along with mutex and condition variables to force the read(9E) routine to wait until the device is no longer busy before starting a transfer. Example 3-1 Using Mutexes and Condition Variablesstatic int xxread(dev_t dev, struct uio *uiop, cred_t *credp) { struct xxstate *xsp; /* ... */ mutex_enter(&xsp->mu); while (xsp->busy) cv_wait(&xsp->cv, &xsp->mu); xsp->busy = 1; mutex_exit(&xsp->mu); /* perform the data access */ } static uint_t xxintr(caddr_t arg) { struct xxstate *xsp = (struct xxstate *)arg; mutex_enter(&xsp->mu); xsp->busy = 0; cv_broadcast(&xsp->cv); mutex_exit(&xsp->mu); } cv_wait() and cv_timedwait() FunctionsIf a thread is blocked on a condition with cv_wait(9F) and that condition does not occur, the thread would wait forever. To avoid that situation, use cv_timedwait(9F), which depends upon another thread to perform a wakeup. cv_timedwait() takes an absolute wait time as an argument. cv_timedwait() returns -1 if the time is reached and the event has not occurred. cv_timedwait() returns a positive value if the condition is met. cv_timedwait(9F) requires an absolute wait time expressed in clock ticks since the system was last rebooted. The wait time can be determined by retrieving the current value with ddi_get_lbolt(9F). The driver usually has a maximum number of seconds or microseconds to wait, so this value is converted to clock ticks with drv_usectohz(9F) and added to the value from ddi_get_lbolt(9F). The following example shows how to use cv_timedwait(9F) to wait up to five seconds to access the device before returning EIO to the caller. Example 3-2 Using cv_timedwait()clock_t cur_ticks, to; mutex_enter(&xsp->mu); while (xsp->busy) { cur_ticks = ddi_get_lbolt(); to = cur_ticks + drv_usectohz(5000000); /* 5 seconds from now */ if (cv_timedwait(&xsp->cv, &xsp->mu, to) == -1) { /* * The timeout time 'to' was reached without the * condition being signaled. */ /* tidy up and exit */ mutex_exit(&xsp->mu); return (EIO); } } xsp->busy = 1; mutex_exit(&xsp->mu); Although device driver writers generally prefer to use cv_timedwait(9F) over cv_wait(9F), sometimes cv_wait(9F) is a better choice. For example, cv_wait(9F) is better if a driver is waiting on the following conditions:
cv_wait_sig() FunctionA driver might be waiting for a condition that cannot occur or will not happen for a long time. In such cases, the user can send a signal to abort the thread. Depending on the driver design, the signal might not cause the driver to wake up. cv_wait_sig(9F) allows a signal to unblock the thread. This capability enables the user to break out of potentially long waits by sending a signal to the thread with kill(1) or by typing the interrupt character. cv_wait_sig(9F) returns zero if it is returning because of a signal, or nonzero if the condition occurred. However, see Threads Unable to Receive Signals for cases in which signals might not be received. The following example shows how to use cv_wait_sig(9F) to allow a signal to unblock the thread. Example 3-3 Using cv_wait_sig()mutex_enter(&xsp->mu); while (xsp->busy) { if (cv_wait_sig(&xsp->cv, &xsp->mu) == 0) { /* Signaled while waiting for the condition */ /* tidy up and exit */ mutex_exit(&xsp->mu); return (EINTR); } } xsp->busy = 1; mutex_exit(&xsp->mu); cv_timedwait_sig() Functioncv_timedwait_sig(9F) is similar to cv_timedwait(9F) and cv_wait_sig(9F), except that cv_timedwait_sig() returns -1 without the condition being signaled after a timeout has been reached, or 0 if a signal (for example, kill(2)) is sent to the thread. For both cv_timedwait(9F) and cv_timedwait_sig(9F), time is measured in absolute clock ticks since the last system reboot. |
||
|